Tesla Fleet Statistics

• **Roadster**
 – Production began in 2008
 – 55 kWh/245 mile range
 – Approximately 2,500 vehicles
 – More than 15 million cells
 – More than 30 million miles driven
 – More than 40 million cell years

• **Model S**
 – Production began in 2012
 – 60 or 85 kWh/ up to 265 mile range
 – More than 7,000 delivered vehicles
 – More than 50 million cells
 – More than 12 million miles driven
 – More than 10 million cell years
Tesla Battery Pack Approach

- Cell, module, pack, charger, drive unit, and vehicle designs are not decoupled: they are intimately linked
 - Detailed understanding of cell performance, degradation, and failure under a full range of possible thermal, mechanical, and electrical use and abuse conditions
 - Cycle cells
 - Customized individual cell abuse tests related to module and pack design
 - Cell destructive examination
 - Close working relationship with cell supplier
 - Customized tests of modules
 - Customized tests of packs
 - Tesla tightly controls every component that interacts with the battery pack electrically, mechanically, thermally
Tesla Battery Pack Approach

- Purchase the highest quality cells, but assume that some will be flawed
 - Mature mass production processes
 - Mature mass production quality control
 - 100,000’s cells from multiple production lots used for validation of products
 - Conduct 100% inspection on cells prior to module assembly
 - Detect cells with micro-shorts
 - Use flawed cells to drive cell manufacturing improvements: Tesla and cell manufacturer examine flawed cells
 - Examine any weak cells identified during testing of prototype modules or packs
Tesla Battery Pack Approach

• Assume that some proportion of cells will undergo a thermal runaway reaction for unknown reasons (manufacturing defect, handling damage, etc.)
 – Design battery pack to be robust to single cell thermal runaway (passive propagation resistance)
 • Tesla tests included in SAE J2464
 • 100% SOC, soak at max vehicle temp spec
 – Small cell approach facilitates control over thermal runaway propagation
 • Liquid cooling in contact with every cell
Tesla Battery Pack Approach

• Assume that flaws can occur during module and pack assembly processes
 – 100% testing of modules to detect poor cell interconnects, high self discharge rate cells, etc.
 – 100% testing of packs to detect module assembly flaws
 – Design protection electronics to detect a range of potential problems that could develop over time:
 • Cells that develop high self discharge rates
 • Failure of interconnects
 • Failure of other components
Tesla Battery Pack Approach

• Assume that customers will want to charge the car at a wide variety of locations
 – 120 V residential outlets
 – 240 V residential outlets
 – High rate home or business charging adaptors
 – Public charging stations
 – Supercharging stations

• Integrate the charger into the vehicle

• Design the drive unit to properly discharge or charge the battery (regenerative braking)
Tesla Battery Pack Approach

• Design pack to be electrically robust
 – Cells are designed with mechanisms to prevent
 • Overcharge,
 • Overheating during short circuit
 • Internal short circuits
 – Multiple, redundant firmware & hardware layers to protect cells, modules, and pack from electrical abuse
 • Overcharge
 • Short circuit
 • Over-discharge
 – Extensive sensing to detect fault conditions
 • Temperature
 • Acceleration
 • Humidity
 – Battery pack disconnects to isolate battery pack and prevent charging or discharging if a fault occurs
 • Internal pack problem
 • Collision detected
 • 12V battery disconnected or cut by 1st responders
Tesla Battery Pack Design Approach

- Design and extensively test packs to be mechanically & thermally robust
 - Design & test cells, modules, and packs to withstand long-term vibration
 - Battery Vibration Test / SAEJ2380
 - Corresponds to approximately 160,000 km of usage at the 90th percentile.
 - 38 hours of vibration comprised of 3 axes (UL 1642 is 4.5 hours total and 2 axes for 18650s)
 - Protect cells from mechanical damage due to collisions or other impacts
 - SAE J2464 crush on modules
 - Crash impact simulation on modules
 - Vehicle crash tests
 - Design and test for robustness to elevated temperature exposure
 - Design and test to resist water intrusion
 - Spray
 - Immersion
 - High humidity / high temperature
 - Design and test to resist chemical exposure
 - Salt fog
 - Corrosive gases (pollution)
 - Common automotive fluids
Tesla Battery Pack Approach

• Tesla supports training of 1st and 2nd responders
 – Publishes 1st Responder Guides
 – Publishes Towing Guides
 – Partners with NFPA, Fire Departments and Training Providers
 • EV Safety / Extrication video

• Tesla supports development of standard tests to characterize behavior under severe abuse conditions
 – SAE J2464 “to determine the response [of electric or hybrid electric vehicle Rechargeable Energy Storage Systems] to conditions or events which are beyond their normal operating range”
 – UL2580 Section 30: External Fire Exposure Test “to determine an electrical storage assembly’s ability to prevent an explosion as a result of exposure to a simulated fuel or vehicle fire external to the energy storage assembly”