Mechanisms of Structural Failure

Steve Prouty, P.E.
Overview

• Background concepts
• Initial indicators of structural distress
• Load path changes during construction
• Remedial actions to address cracking
• Collapse
Background – Axial and Component Forces

Axial Force (Compression or Tension)
Background – Axial and Component Forces

- Vertical Component
- Horizontal Component
- Angle

Vertical Component
Horizontal Component
Background – Axial and Component Forces

- Clamping Force
- Shear Force
- Canopy
- Deck
- Cold Joint

UP
SOUTH
NORTH
DOWN
First Signs of Structural Distress

- Falsework removed sequentially
- Distinct concrete cracking noise heard February 24
- Crack found in member 11/12 nodal region

Crack found at the intersection of truss member 11 with the deck

Source: MCM
First Signs of Structural Distress

- Portion of crack bypassed 25% of reinforcing steel at base of member 11
Placement of Main Span on Shim Stacks

- Support configuration changed as bridge moved to permanent piers
- At north end, four shim stacks used
- No shims used directly beneath truss line

Source: FHWA
Post-Tensioning Force in Diagonal Member 11

- Post-tensioning purposes
 - Counteracted tensile forces during move
 - Vertical clamping force (beneficial)
 - Horizontal shearing force (detrimental)
- 32-degree angle of member 11 relative to deck
- Magnitude of horizontal force 60% larger than vertical force
Construction of Node 11/12

- 5 pipes through member 11/12 nodal region
 - Voids in concrete mass
- Surrounding concrete subjected to higher stresses
- Unanticipated redirection of load path
- Placement of steel reinforcement in members 11 and 12 consistent with construction plans

Source: FHWA
Mechanism Resisting Northward Dislocation

- Two primary mechanisms temporarily resisted northward dislocation
 - Lower portion of member 12
 - Rebar that crossed shear planes under member 11 and beside member 12
- Vertical and confinement reinforcement in member 12
 - Created a column that buttressed load being driven northward

Source: FHWA
Placement of Main Span on Shim Stacks

- To address cracking, shim was installed on March 13 along bridge centerline
 - Jacking of bridge not required

Source: FHWA
To address distress in structure—

- FIGG EOR decided to retension member 11 PT rods
- FIGG EOR intended to return main span to “pre-existing” condition
Summary

• FIGG design resulted in less steel reinforcement and diminished resistance to critical interface shear demand

• Member 11/12 nodal region contained pipe sleeves, resulting in void spaces

• Retensioning of member 11 provided additional force across compromised interface shear plane, resulting in collapse of bridge